Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Stem Cell Res Ther ; 15(1): 124, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679735

RESUMEN

BACKGROUND: Recombinant human bone morphogenetic protein 2 (rhBMP-2) and human bone marrow mesenchymal stromal cells (hBM-MSCs) have been thoroughly studied for research and translational bone regeneration purposes. rhBMP-2 induces bone formation in vivo, and hBM-MSCs are its target, bone-forming cells. In this article, we studied how rhBMP-2 drives the multilineage differentiation of hBM-MSCs both in vivo and in vitro. METHODS: rhBMP-2 and hBM-MSCs were tested in an in vivo subcutaneous implantation model to assess their ability to form mature bone and undergo multilineage differentiation. Then, the hBM-MSCs were treated in vitro with rhBMP-2 for short-term or long-term cell-culture periods, alone or in combination with osteogenic, adipogenic or chondrogenic media, aiming to determine the role of rhBMP-2 in these differentiation processes. RESULTS: The data indicate that hBM-MSCs respond to rhBMP-2 in the short term but fail to differentiate in long-term culture conditions; these cells overexpress the rhBMP-2 target genes DKK1, HEY-1 and SOST osteogenesis inhibitors. However, in combination with other differentiation signals, rhBMP-2 acts as a potentiator of multilineage differentiation, not only of osteogenesis but also of adipogenesis and chondrogenesis, both in vitro and in vivo. CONCLUSIONS: Altogether, our data indicate that rhBMP-2 alone is unable to induce in vitro osteogenic terminal differentiation of hBM-MSCs, but synergizes with other signals to potentiate multiple differentiation phenotypes. Therefore, rhBMP-2 triggers on hBM-MSCs different specific phenotype differentiation depending on the signalling environment.


Asunto(s)
Proteína Morfogenética Ósea 2 , Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Proteínas Recombinantes , Factor de Crecimiento Transformador beta , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Proteínas Recombinantes/farmacología , Osteogénesis/efectos de los fármacos , Animales , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Condrogénesis/efectos de los fármacos , Células Cultivadas , Ratones , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adipogénesis/efectos de los fármacos
2.
Adv Mater ; : e2310258, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226666

RESUMEN

The regeneration of the osteochondral unit represents a challenge due to the distinct cartilage and bone phases. Current strategies focus on the development of multiphasic scaffolds that recapitulate features of this complex unit and promote the differentiation of implanted bone-marrow derived stem cells (BMSCs). In doing so, challenges remain from the loss of stemness during in vitro expansion of the cells and the low control over stem cell activity at the interface with scaffolds in vitro and in vivo. Here, this work scaffolds inspired by the bone marrow niche that can recapitulate the natural healing process after injury. The construct comprises an internal depot of quiescent BMSCs, mimicking the bone marrow cavity, and an electrospun (ESP) capsule that "activates" the cells to migrate into an outer "differentiation-inducing" 3D printed unit functionalized with TGF-ß and BMP-2 peptides. In vitro, niche-inspired scaffolds retained a depot of nonproliferative cells capable of migrating and proliferating through the ESP capsule. Invasion of the 3D printed cavity results in location-specific cell differentiation, mineralization, secretion of alkaline phosphatase (ALP) and glycosaminoglycans (GAGs), and genetic upregulation of collagen II and collagen I. In vivo, niche-inspired scaffolds are biocompatible, promoted tissue formation in rat subcutaneous models, and regeneration of the osteochondral unit in rabbit models.

3.
J Biomed Mater Res A ; 112(2): 210-230, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37706337

RESUMEN

Bone marrow-derived mesenchymal stromal cells (BMSCs) are extensively being utilized for cartilage regeneration owing to their excellent differentiation potential and availability. However, controlled differentiation of BMSCs towards cartilaginous phenotypes to heal full-thickness cartilage defects remains challenging. This study investigates how different surface properties induced by either coating deposition or biomolecules immobilization onto nanofibers (NFs) could affect BMSCs chondro-inductive behavior. Accordingly, electrospun poly(ε-caprolactone) (PCL) NFs were exposed to two surface modification strategies based on medium-pressure plasma technology. The first strategy is plasma polymerization, in which cyclopropylamine (CPA) or acrylic acid (AcAc) monomers were plasma polymerized to obtain amine- or carboxylic acid-rich NFs, respectively. The second strategy uses a combination of CPA plasma polymerization and a post-chemical technique to immobilize chondroitin sulfate (CS) onto the NFs. These modifications could affect surface roughness, hydrophilicity, and chemical composition while preserving the NFs' nano-morphology. The results of long-term BMSCs culture in both basic and chondrogenic media proved that the surface modifications modulated BMSCs chondrogenic differentiation. Indeed, the incorporation of polar groups by different modification strategies had a positive impact on the cell proliferation rate, production of the glycosaminoglycan matrix, and expression of extracellular matrix proteins (collagen I and collagen II). The chondro-inductive behavior of the samples was highly dependent on the nature of the introduced polar functional groups. Among all samples, carboxylic acid-rich NFs promoted chondrogenesis by higher expression of aggrecan, Sox9, and collagen II with downregulation of hypertrophic markers. Hence, this approach showed an intrinsic potential to have a non-hypertrophic chondrogenic cell phenotype.


Asunto(s)
Células Madre Mesenquimatosas , Nanofibras , Humanos , Condrogénesis , Diferenciación Celular , Colágeno/química , Ácidos Carboxílicos , Células Cultivadas
4.
Biomater Sci ; 11(15): 5163-5176, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37435668

RESUMEN

Digital light processing (DLP) printing offers the possibility of fabricating complex objects in a fast and reproducible manner. A main requirement for DLP printing is the use of inks with low viscosities that can flow under the printing platform in a short period of time. Its exploitation in tissue engineering applications has been centered on the use of hydrogel forming materials diluted in aqueous solutions or the use of polyesters in combination with diluents and heating platforms that aid in the reduction of their viscosity. The use of diluents, however, modifies the mechanical properties and reduces the shape fidelity of the printed objects and, the use of heating platforms results in vats with heterogeneous temperatures and ink viscosities. Here, we report on the synthesis of a library of methacrylated low molecular weight (<3000 g mol-1) homopolymers ((P(D,L)LA and PCL) and copolymers (P((D,L)LA-co-CL)) of 2- and 3-arms based on (D,L)-lactide and ε-caprolactone. The resulting inks possessed low viscosity that made them printable in the absence of diluents and heating elements. DLP printing of cubical and cylindrical patterns resulted in objects with a higher shape fidelity than their counterparts fabricated using diluents and with printed features on the order of 300 µm. The printed materials were biocompatible and supported the growth of human mesenchymal stem cells (hMSCs). Moreover, the variations in the composition resulted in polymers that enabled the attachment of hMSCs to different extents, leading to the formation of well-adhered cell monolayers or loosely adhered cell aggregates.


Asunto(s)
Materiales Biocompatibles , Tinta , Humanos , Peso Molecular , Polímeros , Poliésteres , Ingeniería de Tejidos , Impresión Tridimensional , Técnicas de Cultivo de Célula
5.
Biomater Adv ; 149: 213406, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37054582

RESUMEN

The combination of biomaterials and bioactive particles has shown to be a successful strategy to fabricate electrospun scaffolds for bone tissue engineering. Among the range of bioactive particles, hydroxyapatite and mesoporous bioactive glasses (MBGs) have been widely used for their osteoconductive and osteoinductive properties. Yet, the comparison between the chemical and mechanical characteristics as well as the biological performances of these particle-containing scaffolds have been characterized to a limited extent. In this work, we fabricated PEOT/PBT-based composite scaffolds incorporating either nanohydroxyapatite (nHA), strontium-containing nanohydroxyapatite (nHA_Sr) or MBGs doped with strontium ions up to 15 wt./vol% and 12,5 wt./vol% for nHA and MBG, respectively. The composite scaffolds presented a homogeneous particle distribution. Morphological, chemical and mechanical analysis revealed that the introduction of particles into the electrospun meshes caused a decrease in the fiber diameter and mechanical properties, yet maintaining the hydrophilic nature of the scaffolds. The Sr2+ release profile differed according to the considered system, observing a 35-day slowly decreasing release from strontium-containing nHA scaffolds, whereas MBG-based scaffolds showed a strong burst release in the first week. In vitro, culture of human bone marrow-derived mesenchymal stromal cells (hMSCs) on composite scaffolds demonstrated excellent cell adhesion and proliferation. In maintenance and osteogenic media, all composite scaffolds showed high mineralization as well as expression of Col I and OCN compared to PEOT/PBT scaffolds, suggesting their ability to boost bone formation even without osteogenic factors. The presence of strontium led to an increase in collagen secretion and matrix mineralization in osteogenic medium, while gene expression analysis showed that hMSCs cultured on nHA-based scaffolds had a higher expression of OCN, ALP and RUNX2 compared to cells cultured on nHA_Sr scaffolds in osteogenic medium. Yet, cells cultured on MBGs-based scaffolds showed a higher gene expression of COL1, ALP, RUNX2 and BMP2 in osteogenic medium compared to nHA-based scaffolds, which is hypothesized to lead to high osteoinductivity in long term cultures.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Andamios del Tejido , Humanos , Andamios del Tejido/química , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Estroncio/farmacología , Diferenciación Celular , Regeneración Ósea
6.
Adv Healthc Mater ; 12(17): e2203023, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36914581

RESUMEN

Anterior cruciate ligament (ACL) is the connective tissue providing mechanical stability to the knee joint. ACL reconstruction upon rupture remains a clinical challenge due to the high mechanical properties required for proper functioning. ACL owes its outstanding mechanical properties to the arrangement of the extracellular matrix (ECM) and to the cells with distinct phenotypes present along the length of the tissue. Tissue regeneration appears as an ideal alternative. In this study, a tri-phasic fibrous scaffold that mimics the structure of collagen in the native ECM is developed, presenting a wavy intermediate zone and two aligned uncurled extremes. The mechanical properties of the wavy scaffolds present a toe region, characteristic of the native ACL, and an extended yield and ultimate strain compared to aligned scaffolds. The presentation of a wavy fiber arrangement affects cell organization and the deposition of a specific ECM characteristic of fibrocartilage. Cells cultured in wavy scaffolds grow in aggregates, deposit an abundant ECM rich in fibronectin and collagen II, and express higher amounts of collagen II, X, and tenomodulin as compared to aligned scaffolds. In vivo implantation in rabbits shows a high cellular infiltration and the formation of an oriented ECM compared to aligned scaffolds.


Asunto(s)
Ligamento Cruzado Anterior , Andamios del Tejido , Animales , Conejos , Ligamento Cruzado Anterior/cirugía , Andamios del Tejido/química , Ingeniería de Tejidos , Colágeno/análisis , Matriz Extracelular/química
7.
Biofabrication ; 15(1)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395500

RESUMEN

Melt extrusion-based additive manufacturing (AM) is often used to fabricate scaffolds for osteochondral (OC) regeneration. However, there are two shortcomings associated with this scaffold manufacturing technique for engineering of tissue interfaces: (a) most polymers used in the processing are bioinert, and (b) AM scaffolds often contain discrete (material) gradients accompanied with mechanically weak interfaces. The inability to mimic the gradual transition from cartilage to bone in OC tissue leads to poor scaffold performance and even failure. We hypothesized that introducing peptide gradients on the surface could gradually guide human mesenchymal stromal cell (hMSC) differentiation, from a chondrogenic towards on osteogenic phenotype. To work towards this goal, we initially manufactured poly(ϵ-caprolactone)-azide (PCLA) and PCL-maleimide (PCLM) scaffolds. The surface exposed click-type functional groups, with a surface concentration in the 102pmol cm-2regime, were used to introduce bone morphogenic protein-2 or transforming growth factor-beta binding peptide sequences to drive hMSC differentiation towards osteogenic or chondrogenic phenotypes, respectively. After 3 weeks of culture in chondrogenic medium, we observed differentiation towards hypertrophic chondrogenic phenotypes with expression of characteristic markers such as collagen X. In osteogenic medium, we observed the upregulation of mineralization markers. In basic media, the chondro-peptide displayed a minor effect on chondrogenesis, whereas the osteo-peptide did not affect osteogenesis. In a subcutaneous rat model, we observed a minimal foreign body response to the constructs, indicating biocompatibility. As proof-of-concept, we finally used a novel AM technology to showcase its potential to create continuous polymer gradients (PCLA and PCLM) across scaffolds. These scaffolds did not display delamination and were mechanically stronger compared to discrete gradient scaffolds. Due to the versatility of the orthogonal chemistry applied, this approach provides a general strategy for the field; we could anchor other tissue specific cues on the clickable groups, making these gradient scaffolds interesting for multiple interfacial tissue applications.


Asunto(s)
Células Madre Mesenquimatosas , Andamios del Tejido , Humanos , Ratas , Animales , Condrogénesis , Osteogénesis , Cartílago/metabolismo , Diferenciación Celular , Ingeniería de Tejidos/métodos
9.
Adv Healthc Mater ; 11(1): e2101415, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34719861

RESUMEN

Tissue regeneration evolves toward the biofabrication of sophisticated 3D scaffolds. However, the success of these will be contingent to their capability to integrate within the host. The control of the mechanical or topographical properties of the implant appears as an ideal method to modulate the immune response. However, the interplay between these properties is yet not clear. Dual-porosity scaffolds with varying mechanical and topographical features are created, and their immunomodulatory properties in rat alveolar macrophages in vitro and in vivo in a rat subcutaneous model are evaluated. Scaffolds are fabricated via additive manufacturing and thermally induced phase separation methods from two copolymers with virtually identical chemistries, but different stiffness. The introduction of porosity enables the modulation of macrophages toward anti-inflammatory phenotypes, with secretion of IL-10 and TGF-ß. Soft scaffolds (<5 kPa) result in a pro-inflammatory phenotype in contrast to stiffer (>40 kPa) scaffolds of comparable porosities supporting a pro-healing phenotype, which appears to be related to the surface spread area of cells. In vivo, stiff scaffolds integrate, while softer scaffolds appear encapsulated after three weeks of implantation, resulting in chronic inflammation after six weeks. The results demonstrate the importance of evaluating the interplay between topography and stiffness of candidate scaffolds.


Asunto(s)
Impresión Tridimensional , Andamios del Tejido , Animales , Activación de Macrófagos , Macrófagos , Porosidad , Ratas
10.
Materials (Basel) ; 14(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34442884

RESUMEN

The use of biomaterials and scaffolds to boost bone regeneration is increasingly gaining interest as a complementary method to the standard surgical and pharmacological treatments in case of severe injuries and pathological conditions. In this frame, the selection of biomaterials and the accurate assessment of the manufacturing procedures are considered key factors in the design of constructs able to resemble the features of the native tissue and effectively induce specific cell responses. Accordingly, composite scaffolds based on type-I-collagen can mimic the composition of bone extracellular matrix (ECM), while electrospinning technologies can be exploited to produce nanofibrous matrices to resemble its architectural organization. However, the combination of collagen and electrospinning reported several complications due to the frequent denaturation of the protein and the variability of results according to collagen origin, concentration, and solvent. In this context, the strategies optimized in this study enabled the preparation of collagen-based electrospun scaffolds characterized by about 100 nm fibers, preserving the physico-chemical properties of the protein thanks to the use of an acetic acid-based solvent. Moreover, nanoparticles of mesoporous bioactive glasses were combined with the optimized collagen formulation, proving the successful design of composite scaffolds resembling the morphological features of bone ECM at the nanoscale.

11.
Nat Commun ; 12(1): 1031, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589620

RESUMEN

The application of physical stimuli to cell cultures has shown potential to modulate multiple cellular functions including migration, differentiation and survival. However, the relevance of these in vitro models to future potential extrapolation in vivo depends on whether stimuli can be applied "externally", without invasive procedures. Here, we report on the fabrication and exploitation of dynamic additive-manufactured Janus scaffolds that are activated on-command via external application of ultrasounds, resulting in a mechanical nanovibration that is transmitted to the surrounding cells. Janus scaffolds were spontaneously formed via phase-segregation of biodegradable polycaprolactone (PCL) and polylactide (PLA) blends during the manufacturing process and behave as ultrasound transducers (acoustic to mechanical) where the PLA and PCL phases represent the active and backing materials, respectively. Remote stimulation of Janus scaffolds led to enhanced cell proliferation, matrix deposition and osteogenic differentiation of seeded human bone marrow derived stromal cells (hBMSCs) via formation and activation of voltage-gated calcium ion channels.


Asunto(s)
Plásticos Biodegradables/farmacología , Mecanotransducción Celular , Células Madre Mesenquimatosas/efectos de los fármacos , Poliésteres/farmacología , Andamios del Tejido , Plásticos Biodegradables/química , Regeneración Ósea/genética , Huesos/citología , Huesos/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/fisiología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Poliésteres/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Ondas Ultrasónicas
12.
Carbohydr Polym ; 252: 117159, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33183610

RESUMEN

Cellulose nanomaterials (CNMs) have attracted great attention in the last decades due to the abundance of the biopolymer, the biorenewable character and the outstanding mechanical properties they account for. These, together with their biocompatibility makes them ideal candidates for tissue engineering (TE) applications. Additive manufacturing is an ideal biofabrication approach for TE, providing rapid and reliable technologies to produce scaffolds aimed for the guidance of host or implanted cells to form functional tissues. However, the control of parameters at the nanoscale that regulate cellular functions such as proliferation and differentiation remain challenging. This review article presents the latest advances in the use of CNMs as platforms to guide cellular functions in additive manufactured scaffolds. Special attention is given to functionalization routes, methods to exploit them as topographical cues and to improve the local mechanical properties together with the resulting cell-CNM interactions.


Asunto(s)
Materiales Biocompatibles/química , Diferenciación Celular , Celulosa/química , Nanoestructuras , Ingeniería de Tejidos/métodos , Andamios del Tejido , Línea Celular , Humanos
13.
Molecules ; 26(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374888

RESUMEN

A novel chemical profile essential oil, distilled from the aerial parts of Clinopodium taxifolium (Kunth) Govaerts (Lamiaceae), was analysed by Gas Chromatography-Mass Spectrometry (GC-MS, qualitative analysis) and Gas Chromatography with Flame Ionization Detector (GC-FID, quantitative analysis), with both polar and non-polar stationary phase columns. The chemical composition mostly consisted of sesquiterpenes and sesquiterpenoids (>70%), the main ones being (E)-ß-caryophyllene (17.8%), α-copaene (10.5%), ß-bourbonene (9.9%), δ-cadinene (6.6%), cis-cadina-1(6),4-diene (6.4%) and germacrene D (4.9%), with the non-polar column. The essential oil was then submitted to enantioselective GC analysis, with a diethyl-tert-butyldimethylsilyl-ß-cyclodextrin diluted in PS-086 chiral selector, resulting in the following enantiomeric excesses for the chiral components: (1R,5S)-(-)-α-thujene (67.8%), (1R,5R)-(+)-α-pinene (85.5%), (1S,5S)-(-)-ß-pinene (90.0%), (1S,5S)-(-)-sabinene (12.3%), (S)-(-)-limonene (88.1%), (S)-(+)-linalool (32.7%), (R)-(-)-terpinen-4-ol (9.3%), (S)-(-)-α-terpineol (71.2%) and (S)-(-)-germacrene D (89.0%). The inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) of C. taxifolium essential oil was then tested, resulting in selective activity against BChE with an IC50 value of 31.3 ± 3.0 µg/mL (positive control: donepezil, IC50 = 3.6 µg/mL).


Asunto(s)
Acetilcolinesterasa/química , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/análisis , Inhibidores de la Colinesterasa/farmacología , Lamiaceae/química , Aceites Volátiles/análisis , Aceites Volátiles/farmacología , Inhibidores de la Colinesterasa/química , Ecuador , Técnicas In Vitro , Aceites Volátiles/química
15.
Chem Rev ; 120(19): 10547-10607, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32407108

RESUMEN

Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.


Asunto(s)
Bioimpresión , Modelos Biológicos , Impresión Tridimensional , Ingeniería de Tejidos , Humanos
16.
Stem Cells ; 38(8): 948-959, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32379914

RESUMEN

Stanniocalcin-1 (STC1) secreted by mesenchymal stromal cells (MSCs) has anti-inflammatory functions, reduces apoptosis, and aids in angiogenesis, both in vitro and in vivo. However, little is known about the molecular mechanisms of its regulation. Here, we show that STC1 secretion is increased only under specific cell-stress conditions. We find that this is due to a change in actin stress fibers and actin-myosin tension. Abolishment of stress fibers by blebbistatin and knockdown of the focal adhesion protein zyxin leads to an increase in STC1 secretion. To also study this connection in 3D, where few focal adhesions and actin stress fibers are present, STC1 expression was analyzed in 3D alginate hydrogels and 3D electrospun scaffolds. Indeed, STC1 secretion was increased in these low cellular tension 3D environments. Together, our data show that STC1 does not directly respond to cell stress, but that it is regulated through mechanotransduction. This research takes a step forward in the fundamental understanding of STC1 regulation and can have implications for cell-based regenerative medicine, where cell survival, anti-inflammatory factors, and angiogenesis are critical.


Asunto(s)
Actinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miosinas/metabolismo , Zixina/metabolismo , Humanos
17.
Acta Biomater ; 102: 192-204, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31778830

RESUMEN

Although a growing knowledge on the field of tissue engineering of articular cartilage exists, reconstruction or in-vitro growth of functional hyaline tissue still represents an unmet challenge. Despite the simplicity of the tissue in terms of cell population and absence of innervation and vascularization, the outstanding mechanical properties of articular cartilage, which are the result of the specificity of its extra cellular matrix (ECM), are difficult to mimic. Most importantly, controlling the differentiation state or phenotype of chondrocytes, which are responsible of the deposition of this specialized ECM, represents a milestone in the regeneration of native articular cartilage. In this study, we fabricated fused deposition modelled (FDM) scaffolds with different pore sizes and architectures from an elastic and biodegradable poly(ester)urethane (PEU) with mechanical properties that can be modulated by design, and that ranged the elasticity of articular cartilage. Cell culture in additive manufactured 3D scaffolds exceeded the chondrogenic potential of the gold-standard pellet culture. In-vitro cell culture studies demonstrated the intrinsic potential of elastic (PEU) to drive the re-differentiation of de-differentiated chondrocytes when cultured in-vitro, in differentiation or basal media, better than pellet cultures. The formation of neo-tissue was assessed as a high deposition of GAGs and fibrillar collagen II, and a high expression of typical chondrogenic markers. Moreover, the collagen II / collagen I ratio commonly used to evaluate the differentiation state of chondrocytes (ratio > 1 being chondrocytes and, ratio < 0 being de-differentiated chondrocytes) was higher than 5. STATEMENT OF SIGNIFICANCE: Tissue engineering of articular cartilage requires material scaffolds capable of driving the deposition of a coherent and specific ECM representative of articular cartilage. Materials explored so far account for low mechanical properties (hydrogels), or are too stiff to mimic the elasticity of the native tissue (traditional polyesters). Here, we fabricated 3D fibrous scaffolds via FDM with a biodegradable poly(ester)urethane. The compressive Young`s modulus and elastic limit of the scaffolds can be tuned by designed, mimicking those of the native tissue. The designed scaffolds showed an intrinsic potential to drive the formation of a GAG and collagen II rich ECM, and to drive a stable chondrogenic cell phenotype.


Asunto(s)
Cartílago Articular/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Cartílago Articular/citología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Módulo de Elasticidad , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Ratones , Poliésteres/química , Poliuretanos/química , Porosidad
18.
Artículo en Inglés | MEDLINE | ID: mdl-31681736

RESUMEN

Electrospinning is an attractive fabrication process providing a cost-effective and straightforward technic to make extra-cellular matrix (ECM) mimicking scaffolds that can be used to replace or repair injured tissues and organs. Synthetic polymers as poly (ε-caprolactone) (PCL) and poly (ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) have been often used to produce scaffolds due to their good processability, mechanical properties, and suitable biocompatibility. While synthetic polymers can mimic the physical features of native ECM, natural polymers like alginate are better suited to recapitulate its hydrated state or introduce functional groups that are recognized by cells (e.g., -NH2). Thus, this study aims at creating electrospun meshes made of blended synthetic and natural polymers for tissue engineering applications. Polyethylene oxide (PEO), PCL, and PEOT/PBT were used as a carrier of Alginate. Scaffolds were electrospun at different flow rates and distances between spinneret and collector (air gap), and the resulting meshes were characterized in terms of fiber morphology, diameter, and mesh inter-fiber pore size. The fiber diameter increased with increasing flow rate, while there was no substantial influence of the air gap. On the other hand, the mesh pore size increased with increasing air gap, while the effect of flow rate was not significant. Cross-linking and washing of alginate electrospun scaffolds resulted in smaller fiber diameter. These newly developed scaffolds may find useful applications for tissue engineering strategies as they resemble physical and chemical properties of tissue ECM. Human Dermal Fibroblasts were cultured on PCL and PCL/Alginate scaffolds in order to create a dermal substitute.

19.
Biomater Sci ; 7(12): 4984-4989, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31667486

RESUMEN

To exploit the usability of Digital Light Processing (DLP) in regenerative medicine, biodegradable, mechanically customizable and well-defined polyester urethane acrylate resins were synthesized based on poly(caprolactone-co-trimethlenecarbonate). By controlling the monomer ratio, the resultant fabricated constructs showed tunable mechanical properties, degradation and attached hMSC morphologies.


Asunto(s)
Implantes Absorbibles , Resinas Acrílicas/química , Materiales Biocompatibles/química , Caproatos/química , Lactonas/química , Luz , Polímeros/química , Poliuretanos/química , Ingeniería de Tejidos , Materiales Biocompatibles/metabolismo , Ensayo de Materiales , Imagen Óptica , Polímeros/metabolismo , Andamios del Tejido/química
20.
Molecules ; 24(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31771116

RESUMEN

Gaiadandendron punctatum G.Don. (violeta de campo) is a plant used in traditional medicine by the Saraguro people, an ancient indigenous group that lives in southern Ecuador. From samples collected in the region, six glycoside flavonoids, five with quercetin and one with kaempferol as aglycon, were isolated and characterized from hydroalcoholic extracts of leaves and flowers. Rutin (2) was found in flowers and leaves, nicotiflorin (1) was found in flowers, artabotryside A (3) was found in leaves, and three novel quercetin flavonoid glycosides were isolated, elucidated, and characterized via 1D and 2D NMR experiments (1H, 13C, COSY, DEPT, HMBC, HSQC, TOCSY, NOESY, ROESY), acid hydrolysis-derivatization-GC-MS analysis, HPLC-MS, IR, UV, and optical rotation. The new quercetin flavonoid glycosides were named hecpatrin (4) (isolated from leaves), gaiadendrin (5) (isolated from leaves), and puchikrin (6) (isolated from flowers). The hydroalcoholic extracts of the leaves presented antimicrobial activity against Micrococcus luteus, Staphylococcus aureus, and Enterococcus faecalis and the hydroalcoholic extract of the flowers was active against Micrococcus luteus. However, glycoside flavonoids presented scarce antimicrobial activity against bacteria. Hydroalcoholic extracts from leaves and flowers and their secondary metabolites showed inhibition against the α-glucosidase enzyme at different concentrations. Rutin, gaiadendrin, and nicotiflorin showed competitive α-glucosidase inhibition, while hecpatrin presented non-competitive inhibition.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Flavonoides/aislamiento & purificación , Glicósidos/aislamiento & purificación , Loranthaceae/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Ecuador , Enterococcus faecalis/efectos de los fármacos , Flavonoides/química , Flavonoides/farmacología , Flores/química , Cromatografía de Gases y Espectrometría de Masas , Glicósidos/química , Glicósidos/farmacología , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Quercetina , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...